Street Foods of Hong Kong

Fish Balls with Hot Sauce

Clay Pot Pudding

Egg-shaped Mini-cakes

Siu Mai with Fish Meat

Monitoring Food with Millimeter Waves

We may be able to see through glass, water and air, but not packing paper, plastic or cardboard. What remains hidden from the human eye is made visible by a new millimeter-wave sensor: unlike x-ray scanners, it can see through non-transparent materials without sending out harmful rays.

Has the packet been properly filled? Are there impurities in the chocolate? Have the plastic seams been welded correctly? Is there a knife hidden in the parcel? Answers to all these questions are provided by SAMMI, short for Stand Alone MilliMeter wave Imager. The millimeter-wave sensor is able to see through all non-transparent materials. Researchers at the Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR in Wachtberg have developed the device, which at 50 centimeters wide and 32 centimeters high is no larger than a compact laser printer. SAMMI can happily deal with all non-metallic materials. “The system detects wooden splinters lurking in diapers, air pockets in plastic, breaks in bars of marzipan, and foreign bodies in foodstuffs. It can even detect and monitor the dehydration process in plants and how severely they have been stressed by drought,” says Dr. Helmut Essen, head of the FHR’s millimeter-wave radar and high-frequency sensors department.

This makes the scanner extremely versatile – it’s just as suitable for industrial product and quality control as for analyzing materials in the laboratory. Because the system can detect dangerous substances such as explosive powder hidden in letters, vulnerable people such as politicians or freight handlers can be protected by millimeter-wave radar.

SAMMI’s most striking feature is its ability to pick out the smallest differences in materials – differences that are invisible to x-rays. SAMMI can for example differentiate between the different fillings of chocolates, or between rubber composites that have similar or identical absorption qualities. Another advantage is that the scanner doesn’t employ ionizing radiation, which can damage health. It is also low-maintenance, not requiring the regular checks necessary with x-ray tubes.

But how does SAMMI work? Inside the system’s housing, there is both a transmitting and a receiving antenna on each of two opposing rotating plates. A conveyor belt transports the sample – perhaps a package whose contents are unknown – between the antennae, while these send electromagnetic waves in a high frequency of 78 GHz. Different areas of the sample absorb the signal to different degrees, leading the varying material composition across a sample to show up in distinguishable contrast. “Basically we examine the scanned objects for dissimilarities,” explains Essen. The content of the sample appears in real time on the scanner’s fold-out display. If the package contains a knife, even the grain of the handle is discernible. If the handle is hollow, the millimeter-wave sensor would show that, too. The device scans an area of 30 x 30 centimeters in just 60 seconds.

The system can be operated without safety precautions or safety instructions, and since it weighs just 20 kilograms it’s eminently portable. It can also be adjusted to various measuring frequencies,” the scientist points out. In future, the researchers aim to “upgrade” the system for terahertz frequencies of 2 THz. “Then we’ll be in a position not just to detect different structures but also to establish which type of plastic a product is made from. That’s not possible at the moment,” says Dr. Essen.

At present, SAMMI is only suitable for spot checks. However, the FHR researchers are working on adapting the millimeter-wave sensor for industrial assembly lines for the fast, automatic inspection of goods. They envision mounting a line of sensors over the conveyor belt, so that in future products can be scanned at a speed of up to six meters per second.

Source: Fraunhofer

Japanese Hot Pot with Seafood, Chicken and Vegetables


5 oz sea bream fillet
3½ oz squid (body only)
8 shell-on shrimps
4 hard-shell clams
7 oz skinless and boneless chicken thigh
1/2 cake firm tofu
2/3 oz harusame
10 oz Chinese cabbage
7 oz spinach
5 oz shimeji
2 stalks Japanese leek


8 cups dashi
2 tsp salt
3 oz mirin
5 oz light soy sauce


chopped scallion
grated fresh ginger
grated daikon
lemon wedges
chili pepper flakes


  1. Cut sea bream into 3/8-inch wide strips, and squid into bite-sized pieces. Devein shrimp, parboil briefly, and shell. Wash clam with salted water. Cut chicken into 1-inch cubes, parboil briefly. Arrange ingredients on a large plate.
  2. Cut tofu into 1-inch cubes. Soak harusame in water for 15 minutes, and drain. Cut Chinese cabbage and spinach into smaller pieces. Trim stems from shimeji, and tear into small clusters. Cut leek diagonally. Arrange these ingredients on a large plate.
  3. Prepare condiments.
  4. Add broth ingredients to a pot over a portable stove on the dining table. Bring to a boil. Add ingredients while eating, with condiments to taste.

Source: Japanese magazine

Breakfast Idea

Home-cooked Chinese Breakfast


  • Simmered Ground Beef in Spicy Sauce over Extra-soft Tofu
  • Crepe with Deep-fried Long Dough