New Desserts of Ginza Cozy Corner in Tokyo, Japan

Peach Parfait and Peach Milk Frappe

Peach Sandwich

Having Trouble Falling Asleep Predicts Cognitive Impairment in Later Life

A study of nearly 2,500 adults found that having trouble falling asleep, as compared to other patterns of insomnia, was the main insomnia symptom that predicted cognitive impairment 14 years later.

Results show that having trouble falling asleep in 2002 was associated with cognitive impairment in 2016. Specifically, more frequent trouble falling asleep predicted poorer episodic memory, executive function, language, processing speed, and visuospatial performance. Further analysis found that associations between sleep initiation and later cognition were partially explained by both depressive symptoms and vascular diseases in 2014 for all domains except episodic memory, which was only partially explained by depressive symptoms.

“While there is growing evidence for a link between insomnia and cognitive impairment in older adults, it has been difficult to interpret the nature of these associations given how differently both insomnia and cognitive impairment can present across individuals,” said lead author Afsara Zaheed, a graduate student in clinical science within the department of psychology at the University of Michigan. “By investigating associations between specific insomnia complaints and cognition over time using strong measures of cognitive ability, we hoped to gain additional clarity on whether and how these different sleep problems may lead to poor cognitive outcomes.”

Insomnia involves difficulty falling asleep or staying asleep, or regularly waking up earlier than desired, despite allowing enough time in bed for sleep. Daytime symptoms include fatigue or sleepiness; feeling dissatisfied with sleep; having trouble concentrating; feeling depressed, anxious, or irritable; and having low motivation or energy.

The study analyzed data from the Health and Retirement Study, which involved 2,496 adults who were at least 51 years of age. In 2002 they reported the frequency of experiencing insomnia symptoms. In 2016 the participants’ cognition was assessed as part of the Harmonized Cognitive Assessment Protocol and operationalized with a comprehensive neuropsychological battery tapping episodic memory, executive function, language, visuoconstruction, and processing speed. Analyses controlled for sociodemographics and baseline global cognitive performance.

“These results are important given the lack of currently available treatments for late-life cognitive disorders, like Alzheimer’s disease and other dementias,” said Zaheed. “Sleep health and sleep behaviors are often modifiable. These results suggest that regular screening for insomnia symptoms may help with tracking and identifying people with trouble falling asleep in mid-to-late life who might be at risk for developing cognitive impairments later in life. Additional intervention research is needed to determine whether intervening on insomnia symptoms can help prevent or slow the progression of cognitive impairments in later life.”

The research abstract was published recently in an online supplement of the journal Sleep and will be presented as a poster beginning June 9 during Virtual SLEEP 2021. SLEEP is the annual meeting of the Associated Professional Sleep Societies, a joint venture of the American Academy of Sleep Medicine and the Sleep Research Society.

Source: Sleep 2021

Robot Prints Custom Design Inside Drinks

Chris Albrecht wrote . . . . . . . . .

We’ve seen 3D printers create cake decorations, personalized vitamins, and even cultured beef. And now, thanks to Print a Drink’s robot, we’ve seen custom designs printed inside a cocktail. You might think such beverage witchcraft would be impossible. I mean, how could a design be suspended and hold its shape in anything other than a jello shot? Turns out it just takes the right drink, the right droplet and the precision of a robotic arm.

Based in Austria, Print a Drink has actually been around for three years. It was started by Benjamin Greimel as a university research project. Since that time, Print a Drink has created two working robots (one in the U.S. and one in Europe) that up until the pandemic would travel to special events and conferences printing out custom designs inside drinks at parties and such.

So how does it work? Print a Drink uses a robotic arm with a custom-made printer head attached to it. The robot uses a glass needle to inject a food-grade, oil-based liquid inside a drink. The drink itself needs to be less than 40 percent alcohol and can’t be a straight shot of something like vodka or whiskey because the injected beads won’t hold and will float to the surface. Greimel explained to me via video chat this week that the combination of liquid density, temperature and robotic movement allow the designs to last for roughly 10 minutes before dissipating.

Coordinating all those puzzle pieces is complicated to say the least. In addition to setting up the robot at an event and operating it, there are specific requirements around drinks that can be used, and designs need to be uploaded into the robot. Plus, there are safety concerns because the robotic arm does move about pretty quickly. Because of all those reasons, Print a Drink’s business has been around renting the robot ($2,500 – $5,000, depending on the event) and not selling them outright. In addition to all of the complications above, staff would need to be trained properly on how to use the machine, and chances are good that the people operating the devices are not roboticists who can troubleshoot.

To make Print a Drink more accessible, Greimel and his partner (the only two people at the company) have developed a smaller, self-contained version of the robot that is roughly the size of a countertop coffee machine. But don’t expect a consumer version for your next backyard soirée. This smaller version is still complicated, and still requires training, so the company is targeting large corporations like Disney or a hotel chain like Hilton where it could be installed and used for special events or promotions. Greimel said the first prototype of this smaller Print a Drink will be available in the next week.

Though more specialized, Print a Drink is part of a bigger automation movement happening with booze right now. In addition to robot-powered bars like Glacierfire popping up, we’re also seeing automated drink dispensing vending machines from Rotender and Celia start to hit the market. It’s not hard to see all of these types of robots working in tandem, however, with a robo-bartender pumping out standard cocktails, while Print a Drink prints up specialty drinks customized for special occasions. We’ll drink to that.

Source: The Spoon

Saliva Can be More Effective than Nasopharyngeal Swabs for COVID-19 Testing

The collection of nasopharyngeal swab (NPS) samples for COVID-19 diagnostic testing poses challenges including exposure risk to healthcare workers and supply chain constraints. Saliva samples are easier to collect but can be mixed with mucus or blood, and some studies have found they produce less accurate results. A team of researchers has found that an innovative protocol that processes saliva samples with a bead mill homogenizer before real-time PCR (RT-PCR) testing results in higher sensitivity compared to NPS samples. Their protocol appears in The Journal of Molecular Diagnostics, published by Elsevier.

“Saliva as a sample type for COVID-19 testing was a game changer in our fight against the pandemic. It helped us with increased compliance from the population for testing along with decreased exposure risk to the healthcare workers during the collection process,” said lead investigator Ravindra Kolhe, MD, PhD, Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA.

The study included samples from a hospital and nursing home as well as from a drive-through testing site. In the first phase (protocol U), 240 matched NPS and saliva sample pairs were tested prospectively for SARS-CoV-2 RNA by RT-PCR. In the second phase of the study (SalivaAll), 189 matched pairs, including 85 that had been previously evaluated with protocol U, were processed in an Omni bead mill homogenizer before RT-PCR testing. An additional study was conducted with samples with both protocol U and SalivaAll to determine if bead homogenization would affect the clinical sensitivity in NPS samples. Finally, a five-sample pooling strategy was evaluated. Twenty positive pools containing one positive and four negative samples were processed with the Omni bead homogenizer before pooling for SARS-CoV-2 RT-PCR testing and compared to controls.

In Phase I, 28.3 percent of samples tested positive for SARS-CoV-2 from either NPS, saliva, or both. The detection rate was lower in saliva compared to NPS (50.0 percent vs. 89.7 percent). In Phase II, 50.2 percent of samples tested positive for SARS-CoV-2 from either saliva, NPS, or both. The detection rate was higher in saliva compared to NPS samples (97.8 percent vs. 78.9 percent). Of the 85 saliva samples tested with both protocols, the detection rate was 100 percent for samples tested with SalivaAll and 36.7 percent with protocol U.

Dr. Kolhe observed that the underlying issues associated with lower sensitivity of saliva to RT-PCR testing could be attributed to the gel-like consistency of saliva samples, which made it difficult to accurately pipet samples into extraction plates for nucleic acid extraction. Adding the homogenization step rendered the saliva samples to uniform viscosity and consistency, making it easier to pipet for the downstream assay.

Dr. Kolhe and his colleagues also successfully validated saliva samples in the five-sample pooling strategy. The pooled testing results demonstrated a positive agreement of 95 percent, and the negative agreement was found to be 100 percent. Pooled testing will be critical for SARS-CoV-2 mass surveillance as schools reopen, travel and tourism resume, and people return to offices.

“Monitoring SARS-CoV-2 will remain a public health need,” Dr. Kolhe said. “The use of a non-invasive collection method and easily accessible sample such as saliva will enhance screening and surveillance activities and bypass the need for sterile swabs, expensive transport media, and exposure risk, and even the need for skilled healthcare workers for sample collection.”

Source : Elsevier

Blueberry White Chocolate Scones

Ingredients

3 cups all-purpose flour
1/4 cup white sugar
1 Tbsp baking powder
1/2 tsp salt
1/2 cup cold unsalted butter, cut into small pieces or grated
3/4 cup milk plus 2 Tbsp, divided
2 large eggs, beaten
1 Tbsp lemon zest
1 cup blueberries
1 cup white chocolate chips

Method

  1. Preheat oven to 375˚F (190˚C). Line a baking tray with parchment paper.
  2. In a large bowl, combine flour, 1/4 cup sugar, baking powder and salt. Cut in butter with a pastry blender or using a fork until the mixture resembles coarse crumbs. Add 3/4 cup milk, eggs, and lemon zest. Stir just until mixture forms a dough. Gently fold in blueberries and white chocolate chips.
  3. Divide dough in half. On a lightly floured surface, pat each half into 7-inch rounds. Cut each round into wedges. Place each scone on the prepared baking sheet. Brush with 2 Tbsp reserved milk.
  4. Bake for 25 minutes or until golden brown. Serve warm or at room temperature.

Makes 16 scones.

Source: Manitoba Egg Farmers


Today’s Comic